Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Clin Genet ; 104(2): 230-237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37038048

RESUMO

Spondylocostal dysostosis (SCD), a condition characterized by multiple segmentation defects of the vertebrae and rib malformations, is caused by bi-allelic variants in one of the genes involved in the Notch signaling pathway that tunes the "segmentation clock" of somitogenesis: DLL3, HES7, LFNG, MESP2, RIPPLY2, and TBX6. To date, seven individuals with LFNG variants have been reported in the literature. In this study we describe two newborns and one fetus with SCD, who were found by trio-based exome sequencing (trio-ES) to carry homozygous (c.822-5C>T) or compound heterozygous (c.[863dup];[1063G>A]) and (c.[521G>T];[890T>G]) variants in LFNG. Notably, the c.822-5C>T change, affecting the polypyrimidine tract of intron 5, is the first non-coding variant reported in LFNG. This study further refines the clinical and molecular features of spondylocostal dysostosis 3 and adds to the numerous investigations supporting the usefulness of trio-ES approach in prenatal and neonatal settings.


Assuntos
Anormalidades Múltiplas , Hérnia Diafragmática , Humanos , Recém-Nascido , Coluna Vertebral/anormalidades , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Alelos , Proteínas com Domínio T/genética , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Genet Med ; 25(1): 37-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322149

RESUMO

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , Síndrome
3.
Eur J Hum Genet ; 29(12): 1729-1733, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34621023

RESUMO

Congenital diaphragmatic hernia (CDH) is a life-threatening malformation characterised by failure of diaphragmatic development with lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). The incidence is 1:2000 corresponding to 8% of all major congenital malformations. Morbidity and mortality in affected newborns are very high and at present, there is no precise prenatal or early postnatal prognostication parameter to predict clinical outcome in CDH patients. Most cases occur sporadically, however, genetic causes have long been discussed to explain a proportion of cases. These range from aneuploidy to complex chromosomal aberrations and specific mutations often causing a complex phenotype exhibiting multiple malformations along with CDH. This review summarises the genetic variations which have been observed in syndromic and isolated cases of congenital diaphragmatic hernia.


Assuntos
Hérnia Diafragmática/genética , Mutação , Testes Genéticos/métodos , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/metabolismo , Humanos , Vitamina A/metabolismo
4.
Sci Rep ; 11(1): 9560, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953269

RESUMO

Tonne-Kalscheuer syndrome (TOKAS) is an X-linked intellectual disability syndrome associated with variable clinical features including craniofacial abnormalities, hypogenitalism and diaphragmatic hernia. TOKAS is caused exclusively by variants in the gene encoding the E3 ubiquitin ligase gene RLIM, also known as RNF12. Here we report identification of a novel RLIM missense variant, c.1262A>G p.(Tyr421Cys) adjacent to the regulatory basic region, which causes a severe form of TOKAS resulting in perinatal lethality by diaphragmatic hernia. Inheritance and X-chromosome inactivation patterns implicate RLIM p.(Tyr421Cys) as the likely pathogenic variant in the affected individual and within the kindred. We show that the RLIM p.(Tyr421Cys) variant disrupts both expression and function of the protein in an embryonic stem cell model. RLIM p.(Tyr421Cys) is correctly localised to the nucleus, but is readily degraded by the proteasome. The RLIM p.(Tyr421Cys) variant also displays significantly impaired E3 ubiquitin ligase activity, which interferes with RLIM function in Xist long-non-coding RNA induction that initiates imprinted X-chromosome inactivation. Our data uncover a highly disruptive missense variant in RLIM that causes a severe form of TOKAS, thereby expanding our understanding of the molecular and phenotypic spectrum of disease severity.


Assuntos
Anormalidades Craniofaciais , Hérnia Diafragmática , Hipogonadismo , Deficiência Intelectual , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases , Humanos , Recém-Nascido , Masculino , Anormalidades Craniofaciais/genética , Hérnia Diafragmática/genética , Hipogonadismo/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Eur J Pediatr Surg ; 31(1): 120-125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32862424

RESUMO

INTRODUCTION: Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to originate from mesenchymal defects in pleuroperitoneal folds (PPFs) and primordial lungs. Pre-B-cell leukemia homeobox 1 (Pbx1), its binding partner myeloid ecotropic integration site 1 (Meis1), and runt-related transcription factor 1 (Runx1) are expressed in diaphragmatic and lung mesenchyme, functioning as transcription cofactors that modulate mesenchymal cell proliferation. Furthermore, Pbx1 -/- mice develop diaphragmatic defects and PH similar to human CDH. We hypothesized that diaphragmatic and pulmonary Pbx1, Meis1, and Runx1 expression is decreased in the nitrofen-induced CDH model. MATERIALS AND METHODS: Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on D13, D15, and D18, and were divided into control and nitrofen-exposed specimens. Diaphragmatic and pulmonary gene expression levels of Pbx1, Meis1, and Runx1 were analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence-double-staining for Pbx1, Meis1, and Runx1 was combined with mesenchymal/myogenic markers Gata4 and myogenin to evaluate protein expression. RESULTS: Relative mRNA expression of Pbx1, Meis1, and Runx1 was significantly decreased in PPFs (D13), developing diaphragms/lungs (D15), and muscularized diaphragms/differentiated lungs (D18) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning-microscopy revealed markedly diminished Pbx1, Meis1, and Runx1 immunofluorescence in diaphragmatic and pulmonary mesenchyme, associated with less proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. CONCLUSION: Decreased Pbx1, Meis1, and Runx1 expression during diaphragmatic development and lung branching morphogenesis may reduce mesenchymal cell proliferation, causing malformed PPFs and disrupted airway branching, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.


Assuntos
Diafragma/metabolismo , Hérnia Diafragmática/metabolismo , Pulmão/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core , Diafragma/embriologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hérnia Diafragmática/embriologia , Hérnia Diafragmática/genética , Humanos , Pulmão/embriologia , Masculino , Mesoderma/metabolismo , Proteína Meis1 , Fator de Transcrição 1 de Leucemia de Células Pré-B , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Am J Med Genet A ; 182(7): 1807-1811, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506814

RESUMO

Our improved tools to identify the aetiologies in patients with multiple abnormalities resulted in the finding that some patients have more than a single genetic condition and that some of the diagnoses made in the past are acquired rather than inherited. However, limited knowledge has been accumulated regarding the phenotypic outcome of the interaction between different genetic conditions identified in the same patients. We report a newborn girl with brachytelephalangic chondrodysplasia punctata (BCDP) as well as frontonasal dysplasia, ptosis, bilateral hearing loss, vertebral anomalies, and pulmonary hypoplasia who was found, by whole exome sequencing, to have a de novo pathogenic variant in RAF1 (c.770C>T, [p.Ser257Leu]) and a likely pathogenic variant in SIX2 (c.760G>A [p.A254T]), as well as maternal systemic lupus erythematosus (SLE). This case shows that BCDP is most probably not a diagnostic entity and can be associated with various conditions associated with CDP including maternal SLE.


Assuntos
Anormalidades Múltiplas/genética , Condrodisplasia Punctata/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-raf/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Condrodisplasia Punctata/diagnóstico , Condrodisplasia Punctata/patologia , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Face/anormalidades , Face/patologia , Feminino , Predisposição Genética para Doença , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Humanos , Recém-Nascido
9.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452540

RESUMO

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Assuntos
Variação Genética/genética , Hérnia Diafragmática/diagnóstico por imagem , Hérnia Diafragmática/genética , Deformidades Congênitas dos Membros/diagnóstico por imagem , Deformidades Congênitas dos Membros/genética , Proteínas de Membrana/genética , Adulto , Sequência de Aminoácidos , Criança , Estudos de Coortes , Eletroencefalografia/métodos , Facies , Hérnia Diafragmática/fisiopatologia , Humanos , Recém-Nascido , Deformidades Congênitas dos Membros/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino
10.
Nature ; 580(7801): 124-129, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238941

RESUMO

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Assuntos
Relógios Biológicos/fisiologia , Desenvolvimento Embrionário/fisiologia , Células-Tronco Pluripotentes/citologia , Somitos/citologia , Somitos/crescimento & desenvolvimento , Anormalidades Múltiplas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Biológicos/genética , Desenvolvimento Embrionário/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Hérnia Diafragmática/genética , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Fenótipo , Somitos/metabolismo , Fatores de Tempo
11.
Am J Med Genet A ; 182(6): 1466-1472, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32212228

RESUMO

The clinical and radiological spectrum of spondylocostal dysostosis syndromes encompasses distinctive costo-vertebral anomalies. RIPPLY2 biallelic pathogenic variants were described in two distinct cervical spine malformation syndromes: Klippel-Feil syndrome and posterior cervical spine malformation. RIPPLY2 is involved in the determination of rostro-caudal polarity and somite patterning during development. To date, only four cases have been reported. The current report aims at further delineating the posterior malformation in three new patients. Three patients from two unrelated families underwent clinical and radiological examination through X-ray, 3D computed tomography and brain magnetic resonance imaging. After informed consent was obtained, family-based whole exome sequencing (WES) was performed. Complex vertebral segmentation defects in the cervico-thoracic spine were observed in all patients. WES led to the identification of the homozygous splicing variant c.240-4T>G in all subjects. This variant is predicted to result in aberrant splicing of Exon 4. The current report highlights a subtype of cervical spine malformation with major atlo-axoidal malformation compromising spinal cord integrity. This distinctive mutation-specific pattern of malformation differs from Klippel-Feil syndrome and broadens the current classification, defining a sub-type of RIPPLY2-related skeletal disorder. Of note, the phenotype of one patient overlaps with oculo-auriculo-vertebral spectrum disorder.


Assuntos
Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Síndrome de Klippel-Feil/genética , Anormalidades Musculoesqueléticas/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Vértebras Cervicais/diagnóstico por imagem , Feminino , Hérnia Diafragmática/diagnóstico por imagem , Hérnia Diafragmática/patologia , Homozigoto , Humanos , Síndrome de Klippel-Feil/diagnóstico por imagem , Síndrome de Klippel-Feil/patologia , Imageamento por Ressonância Magnética , Anormalidades Musculoesqueléticas/diagnóstico por imagem , Anormalidades Musculoesqueléticas/patologia , Mutação/genética , Radiografia , Sequenciamento do Exoma
12.
J Med Genet ; 56(9): 622-628, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31015262

RESUMO

BACKGROUND: Congenital scoliosis (CS) is a common vertebral malformation. Spondylocostal dysostosis (SCD) is a rare skeletal dysplasia characterised by multiple vertebral malformations and rib anomalies. In a previous study, a compound heterozygosity for a null mutation and a risk haplotype composed by three single-nucleotide polymorphisms in TBX6 have been reported as a disease-causing model of CS. Another study identified bi-allelic missense variants in a SCD patient. The purpose of our study is to identify TBX6 variants in CS and SCD and examine their pathogenicity. METHODS: We recruited 200 patients with CS or SCD and investigated TBX6 variants. We evaluated the pathogenicity of the variants by in silico prediction and in vitro experiments. RESULTS: We identified five 16p11.2 deletions, one splice-site variant and five missense variants in 10 patients. In vitro functional assays for missense variants identified in the previous and present studies demonstrated that most of the variants caused abnormal localisation of TBX6 proteins. We confirmed mislocalisation of TBX6 proteins in presomitic mesoderm cells induced from SCD patient-derived iPS cells. In induced cells, we found decreased mRNA expressions of TBX6 and its downstream genes were involved in somite formation. All CS patients with missense variants had the risk haplotype in the opposite allele, while a SCD patient with bi-allelic missense variants did not have the haplotype. CONCLUSIONS: Our study suggests that bi-allelic loss of function variants of TBX6 cause a spectrum of phenotypes including CS and SCD, depending on the severity of the loss of TBX6 function.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Alelos , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Mutação com Perda de Função , Escoliose/congênito , Escoliose/diagnóstico , Coluna Vertebral/anormalidades , Proteínas com Domínio T/genética , Biologia Computacional/métodos , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação de Sentido Incorreto
13.
J Emerg Med ; 56(1): e1-e4, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30420309

RESUMO

BACKGROUND: RIPPLY2-associated spondylocostal dysostosis is a rare disorder that leads to segmentation defects of the vertebrae. These vertebral defects can result in severe instability of the cervical spine, leading to cardiac arrest after only minor whiplash injury. CASE REPORT: We present the case of a healthy 7-year-old child who experienced an out-of-hospital cardiac arrest. He was reported to have profound respiratory distress and collapsed after going down a slide, without trauma. He was resuscitated in the field, and presented to the emergency department, where return of spontaneous circulation was achieved. Imaging of his cervical spine revealed multiple abnormalities. It was determined that a whiplash injury led to hypoxia and bradycardia due to the anatomic abnormalities of his cervical spine, resulting in cardiovascular collapse. He recovered fully and was later diagnosed with SCDO6, an autosomal recessive inherited disorder caused by a mutation in the RIPPLY2 gene. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Unfamiliarity of providers with this mechanism of cardiac arrest, and the rarity of the syndrome itself, make early recognition very difficult. Late diagnosis and lack of preventative measures, including immediate cervical spine stabilization, can lead to catastrophic outcomes. In patients with cardiac arrest of unclear etiology, early consideration of cervical spine immobilization and evaluation can be lifesaving.


Assuntos
Vértebras Cervicais/lesões , Hérnia Diafragmática/complicações , Parada Cardíaca Extra-Hospitalar/etiologia , Anormalidades Múltiplas/genética , Acidentes de Trânsito , Vértebras Cervicais/anormalidades , Vértebras Cervicais/diagnóstico por imagem , Criança , Doenças Genéticas Inatas , Hérnia Diafragmática/genética , Humanos , Instabilidade Articular/complicações , Instabilidade Articular/diagnóstico , Instabilidade Articular/diagnóstico por imagem , Masculino , Ressuscitação/métodos
14.
J Hum Genet ; 64(3): 261-264, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30531807

RESUMO

Spondylocostal dysostosis (SCDO) is a heterogeneous group of skeletal disorders characterized by multiple segmentation defects involving vertebrae and ribs. Seven disease genes have been reported as causal genes for SCDO: DLL3, MESP2, TBX6, HES7, RIPPLY2, DMRT2, and LFNG. Here we report a Japanese SCDO case with multiple severe vertebral anomalies from cervical to sacral spine. The patient was a compound heterozygote for c.372delG (p.K124Nfs*) and c.601G>A (p.D201N) variants of LFNG, which encodes a glycosyltransferase (O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase). The missense variant was in the DxD motif, an active-site motif of the glycosyltransferase, and its loss of the enzyme function was confirmed by an in vitro enzyme assay. This is the second report of LFNG mutations in SCDO.


Assuntos
Anormalidades Múltiplas/genética , Glicosiltransferases/genética , Hérnia Diafragmática/genética , Hexosiltransferases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas/patologia , Sequência de Aminoácidos , Glucosiltransferases , Hérnia Diafragmática/patologia , Humanos , Lactente , Masculino , Prognóstico , Homologia de Sequência
15.
Cell Physiol Biochem ; 46(2): 505-519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614492

RESUMO

BACKGROUND/AIMS: The major histocompatibility complex (MHC) categorized into three (I, II and III) classes elicits the immunogenic response by presenting exogenous peptides to T cells. The MHC-II DM is composed of DMα and DMß, two polypeptide chains, both are encoded by separate MHC genes involved in antigen processing and presentation. Despite the acknowledged role of MHC complex in humans, the literature is silent on the organization and expression of these genes in water buffalo Bubalus bubalis, an agriculturally important animal species. METHODS: We deduced the full-length mRNA sequences of DMα and DMß genes, localized them onto the chromosome 2, assessed their copy number per haploid genome and studied tissue and disease specific expression. RESULTS: The Real Time PCR showed higher expression of both the genes and their seven interacting partners in spleen, gonads and spermatozoa. Significantly, upregulation of DMα and DMß genes and their interacting partners were detected in diseased group of buffaloes as compared to that in healthy ones. CONCLUSION: The upregulation of Bubalus bubalis (BuLA)-DMα and DMß genes and their interacting partners reflect their role in regulating immune responses towards the amelioration of diseases. Work on this line would enhance our understanding on the overall roles of MHC locus, allowing development of possible therapeutic treatment strategies.


Assuntos
Búfalos/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Sequência de Bases , Cromossomos/genética , Cromossomos/metabolismo , Clonagem Molecular , Variações do Número de Cópias de DNA , Haploidia , Hemoglobinúria/genética , Hemoglobinúria/patologia , Hemoglobinúria/veterinária , Hérnia Diafragmática/genética , Hérnia Diafragmática/patologia , Hérnia Diafragmática/veterinária , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Hibridização in Situ Fluorescente , Pneumonia/genética , Pneumonia/patologia , Pneumonia/veterinária , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Regulação para Cima
16.
Am J Med Genet A ; 176(5): 1216-1221, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681102

RESUMO

Spondylocostal dysostosis (SCD) is a rare disorder characterized by vertebral segmentation defects and malformations of the ribs. SCD patients have some degree of (kypho)scoliosis, short stature and suffer from respiratory impairment due to the reduced size of their thoracic cage. Mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2 are known to cause different subtypes of SCD. Here, we report on a male neonate with an apparent distinct SCD-like phenotype only partly overlapping the previously described SCD subtypes. The proband presented with severe rib malformations (missing, fused, bifid, and hypoplastic ribs), vertebral malformations (intervertebral fusions of the laminae and irregular ossification of the vertebral bodies), and a mild scoliosis. Clear segmentation defects of the vertebral bodies were lacking. Other dysmorphic features were present as well. Severe respiratory insufficiency was present from birth. Whole exome sequencing identified a homozygous start-loss variant in DMRT2 (NM_006557.6: c.1A > T p.[Met1?]) being a likely cause of the SCD-like phenotype in the proband. Mutations in DMRT2 (OMIM#604935) have not been described in relation to SCD-related phenotypes in humans before. However, Dmrt2 knock-out mice exhibit severe rib and vertebral defects that strikingly overlap with the radiological phenotype of the proband reported here. Therefore, it seems plausible that mutations in DMRT2 are associated with a different (novel) subtype of SCD mainly characterized by severe rib anomalies but lacking clear segmentation defects of the vertebral bodies.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Homozigoto , Mutação , Fenótipo , Costelas/anormalidades , Coluna Vertebral/anormalidades , Fatores de Transcrição/genética , Alelos , Evolução Fatal , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Recém-Nascido , Masculino , Radiografia , Costelas/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada Espiral , Sequenciamento do Exoma
17.
Eur J Hum Genet ; 26(3): 340-349, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330547

RESUMO

Fryns syndrome (FS) is a multiple malformations syndrome with major features of congenital diaphragmatic hernia, pulmonary hypoplasia, craniofacial dysmorphic features, distal digit hypoplasia, and a range of other lower frequency malformations. FS is typically lethal in the fetal or neonatal period. Inheritance is presumed autosomal recessive. Although no major genetic cause has been identified for FS, biallelic truncating variants in PIGN, encoding a component of the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway, have been identified in a limited number of cases with a phenotype compatible with FS. Biallelic variants in PIGN, typically missense or compound missense with truncating, also cause multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Here we report six further patients with FS with or without congenital diaphragmatic hernia and recessive loss of function PIGN alleles, including an intragenic deletion with a likely founder effect in La Réunion and other Indian Ocean islands. Our results support the hypothesis that a spectrum of phenotypic severity is associated with recessive PIGN variants, ranging from FS at the extreme end, caused by complete loss of function, to MCAHS1, in which some residual PIGN function may remain. Our data add FS resulting from PIGN variants to the catalog of inherited GPI deficiencies caused by the disruption of the GPI-anchor biosynthesis pathway.


Assuntos
Efeito Fundador , Hérnia Diafragmática/genética , Deformidades Congênitas dos Membros/genética , Mutação com Perda de Função , Fosfotransferases/genética , Facies , Feminino , Deleção de Genes , Hérnia Diafragmática/patologia , Humanos , Lactente , Recém-Nascido , Deformidades Congênitas dos Membros/patologia , Masculino
18.
Genet Med ; 20(10): 1236-1245, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323665

RESUMO

PURPOSE: We delineate the clinical spectrum and describe the histology in arterial tortuosity syndrome (ATS), a rare connective tissue disorder characterized by tortuosity of the large and medium-sized arteries, caused by mutations in SLC2A10. METHODS: We retrospectively characterized 40 novel ATS families (50 patients) and reviewed the 52 previously reported patients. We performed histology and electron microscopy (EM) on skin and vascular biopsies and evaluated TGF-ß signaling with immunohistochemistry for pSMAD2 and CTGF. RESULTS: Stenoses, tortuosity, and aneurysm formation are widespread occurrences. Severe but rare vascular complications include early and aggressive aortic root aneurysms, neonatal intracranial bleeding, ischemic stroke, and gastric perforation. Thus far, no reports unequivocally document vascular dissections or ruptures. Of note, diaphragmatic hernia and infant respiratory distress syndrome (IRDS) are frequently observed. Skin and vascular biopsies show fragmented elastic fibers (EF) and increased collagen deposition. EM of skin EF shows a fragmented elastin core and a peripheral mantle of microfibrils of random directionality. Skin and end-stage diseased vascular tissue do not indicate increased TGF-ß signaling. CONCLUSION: Our findings warrant attention for IRDS and diaphragmatic hernia, close monitoring of the aortic root early in life, and extensive vascular imaging afterwards. EM on skin biopsies shows disease-specific abnormalities.


Assuntos
Artérias/anormalidades , Proteínas Facilitadoras de Transporte de Glucose/genética , Hérnia Diafragmática/genética , Instabilidade Articular/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Dermatopatias Genéticas/genética , Malformações Vasculares/genética , Adolescente , Adulto , Aorta/diagnóstico por imagem , Aorta/fisiopatologia , Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Biópsia , Criança , Pré-Escolar , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Hérnia Diafragmática/fisiopatologia , Humanos , Lactente , Instabilidade Articular/epidemiologia , Instabilidade Articular/fisiopatologia , Masculino , Mutação , Linhagem , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Pele/patologia , Dermatopatias Genéticas/epidemiologia , Dermatopatias Genéticas/fisiopatologia , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética , Malformações Vasculares/epidemiologia , Malformações Vasculares/fisiopatologia
19.
J Trop Pediatr ; 64(5): 438-440, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161443

RESUMO

The authors present a case of Fragile X syndrome (FXS) in siblings from an Indian family with no developmental delay in previous generations. The boy presented with developmental delay, autistic features and defiant behaviours that raised clinical suspicion. He also had congenital diaphragmatic hernia (CDH). Social anxiety and difficulty in making friends were the subtle features in his sister with dull normal intelligence. FXS was confirmed by clinical features and DNA testing. Intervention was initiated for both the siblings. Screening siblings in FXS is important. CDH can be associated with FXS.


Assuntos
Deficiências do Desenvolvimento/genética , Síndrome do Cromossomo X Frágil/complicações , Hérnia Diafragmática/diagnóstico , Hérnias Diafragmáticas Congênitas/complicações , Criança , Desenvolvimento Infantil , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Feminino , Síndrome do Cromossomo X Frágil/genética , Hérnia Diafragmática/genética , Hérnias Diafragmáticas Congênitas/genética , Humanos , Deficiência Intelectual , Desenvolvimento da Linguagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...